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Based on a proposal by Shinomoto, a new integral equation is derived for the 
radial distribution function of a hard-sphere fluid using mainly geometric 
arguments. This integral equation is solved by a perturbation expansion in the 
density of the fluid, and the results obtained are compared with those from 
molecular dynamics simulations and from the Born-Green-Yvon (BGY) and 
Percus-Yevick (PY) theories. The present theory provides results for the radial 
distribution function which are intermediate in accuracy between those obtained 
from the BGY and from the PY theories. 

KEY WORDS: Hard sphere fluid; radial pair distribution function; pertur- 
bation solution. 

1. I N T R O D U C T I O N  

The radial pair distribution function is of fundamental importance in 
describing a dense fluid system in thermodynamic equilibrium. Formally, 
the pair distribution function is intimately connected to a hierarchy of 
many-body distribution functions. Presently, there exist several possible 
alternatives to break this hierarchy and arrive at an approximate solution. 
It fs the purpose of this paper to explore a new way to determine the pair 
distribution function of a dense fluid and to compare it with previous 
approaches. 

Among these previous approaches, the Born-Green Yvon (BGY) 
hierarchy of equations relates the s-particle distribution function to the 
(s+ 1)-particle distribution function for a general choice of s. Choosing 
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s = 2 and utilizing a superposition approximation to express the three-par- 
ticle distribution function in terms of the pair distribution function then 
yields the BGY equation for the radial pair distribution function, g(r), 

- k B g V t l n ( g ( r 1 2 ) } = V i V ( r t 2 ) + n l d q 3 g ( r 1 3 ) g ( r 2 3 ) V , V ( r t 3  ) (BGY) 

where V(r) is the interatomic potential and r is the separation between 
particles. (2> This nonlinear integral equation has been extensively 
investigated via analytic and numerical procedures. (1'3'4~ 

Another approach, providing much better results, uses the connection 
between the thermodynamic partition function and the equilibrium dis- 
tribution function to derive a completely different nonlinear integral 
equation. The Ornstein-Zernike equation relates the pair correlation 
function [v(r) = g(r) - 1 ] and the direct correlation function, c(r), as (5) 

v(r) = c(r) + n f c(r') v(lr - r'l) dr' (oz) 

Although this expression is exact, a second independent relationship 
between the unknown functions is required to provide closure of the 
integral equation. This is provided by the Percus Yevick (PY) 
approximation, (6) 

c(r) = g(r)(1 - e v{r)/kr) (py)  

or the hypernetted chain (HNC) approximation (7) 

c(r) = g(r) - 1 - ln[g(r)]  - V(r)/kT (HNC) 

Each of these is obtained by summing over a certain class of diagrams of 
an appropriate graphical expression. In principle the HNC approximation 
is the better of the two approximations since more diagrams are retained. 
However, in actual practice, the PY approximation provides far superior 
numerical results/x) In the presence of a hard wall, the generalized mean 
spherical approximation (8) presents a further refinement of the Ornstein 
Zernike approach. 

Numerical experiments, using either Monte Carlo or molecular 
dynamics methods, provide the most "exact" results for the dense fluid 
system. In these types of numerical simulation, a many-body system is 
analyzed by recording the movement of all of the particles. Extensive 
results have been tabulated using the molecular dynamics approach for 
both the hard sphere potential (9) and for the more realistic Lennard-Jones 
interatomic potential. (1~ Such calculations provide a useful comparison for 
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the various integral equation methodologies. In this paper, and the follow- 
ing one, we will use the geometrical arguments first proposed by 
Shinomoto (11) to find an equation of state for hard spheres against a hard 
wall and extend it to develop a new and completely different integral 
equation for g(r) to describe the dense fluid system. Shinomoto's initial 
result was extremely compact and remarkably accurate. For  this reason it 
has received some attention as a useful tool. (12,13) In addition, Shinomoto's 
original method suggests a perturbation solution of the new integral 
equation in terms of the packing fraction. 

In Section 2, Shinomoto's theory of a hard sphere system is outlined 
and the new integral equation derived. In Section 3, the perturbation 
solution is developed to second order in the packing fraction, y. In Sec- 
tion 4, the results for the second-order pair distribution function are given. 
In Section 5, the third-order perturbation solution is derived. In Section 6, 
results for the third-order pair distribution are given. Finally, in Section 7, 
comparisons between this new integral equation and the existing integral 
equation theories of liquids are discussed. 

2. S H I N O M O T O ' S  THEORY FOR A HARD-SPHERE GAS 

Consider a gas of average atom density n consisting of hard-sphere 
particles of radius a. Let g(r) denote the radial distribution function defined 
in the usual manner such that 4~ng(r)rZdr is the number of particles to be 
found between the radii r and r + dr from the center of any test particle. 
Instead of the radial distance r we may also use the distance x -- r - a from 
the surface of the test particle to the centers of surrounding atoms, and we 
may write instead 

g ( r ) =  g~(x) (1) 

If the test particle now has a different radius, say R, than all the other par- 
ticles in the gas, we denote this radial distribution function by gR(x). 

We now make the usual assumption that the radial distribution 
function can be represented in the form 

where ~b(x) is given by 

gR(x) = exp [ - O(x)/kT] (2) 

I 
x 

r  = - F ( x ' )  dx '  (3) 
3 0  

Here, F(x) is the mean force exerted on a generic particle (indicated by the 
solid small circle in Figs. 1 and 2) located at a distance x from the test par- 
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Fig. 1. Configuration of a convex "text particle" of radius R surrounded by generic particles 
of radius a. 

ticle's surface and r is the corresponding potential function. This force is 
the net action of the collisions of this generic particle at distance x with all 
remaining particles surrounding it. These remaining particles are indicated 
by dashed circles when the "test particle" has a convex and a concave sur- 
face, respectively. The test particle's surface will represent the curved sur- 
face of the cavity or wall in later investigations�9 

The probability of finding one of the remaining particles in contact 
with the generic particle is assumed to be equal to the product of the 
probability of finding a particle at a distance 2R from the surface of the test 
particle and the probability of two particles being in contact with one 
another. Hence, the density of these particles is riga(a) gR(Y~R). This is, in 

Fig. 2. Same as Fig. l except for a concave 
"test particle." 
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effect, the superposition approximation for the three-body distribution 
function. The remaining particles then exert on the generic particle the 
following net force in the direction perpendicular to the test particle's sur- 
face: 

f; F(x) = 2r~(2a)2nkTga(a) ge[2(x, cos 0)] cos 0 sin 0 dO (4) 
0(x) 

If the generic particle is at a distance x < 3a from the test particle's surface, 
the impingement angle 0 is limited to the range 0o <~ 0 ~< ~z, where 0o can be 
obtained from the triangle (TGP) in Figs. 1 and 2 by simple trigonometric 
considerations. The result is 

cOSOo(X)={~(x ++_R)Z+4aZ-(a+_R)Z]/[4a(x + R)] for a<~x<~3a 
for x ~> 3a (5) 

A similar trigonometric analysis gives the distance 2~ of one of the remain- 
ing particles from the test surface: 

2R(x, cosO)=[(x4-R)2+4a2-4a(x+R)cosO] l /2TR (6) 

The upper (lower) signs in Eqs. (5) and (6) apply to the convex (concave) 
test surface. 

We may abbreviate the formulas somewhat by introducing the hard- 
sphere packing fraction 

47r 
y = ~- a3n (7) 

and the new integration variable 

u = cos 0 (8) 

Inserting Eq. (4) into Eq. (3) and subsequently into Eq. (2) we obtain an 
integral equation for the radial distribution function of the form 

6 L ; os dx' O~ U)] U du (9) In gR(x) = yga(a) a -1 

If we set R = +a, we obtain also an integral equation for the pair dis- 
tribution function ga(x) given by 

in g~(x)= yg~(a) dx' ga[2a(X', U)] U du (10) 
a 1 
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where 

ua(x)={(lx+a)/4a for a<~x<~3a 
for x>~3a (11) 

and 

ffa(x, u) = [(x + a) 2 + 4a 2 - 4au(x + a)] 1/2 _ a (12) 

Equations (9) and (10) must be solved either numerically or by iteration. 
The latter method was chosen for the present paper, and it is described in 
the following section. Once gR(x) has been determined, the gas-kinetic 
pressure exerted on the curved test surface is given by 

p = nkTgR(a) (13) 

For a flat test surface, R ~ ~ ,  Eq. (13) should reproduce the known results 
for the equation of state for a hard-sphere gas as obtained from either the 
existing integral equation theories or from molecular dynamics computer 
simulations. As Shinomoto has shown, (1~) this is indeed the case. Although 
his equation of state is of different mathematical form, it gives practically 
identical results to the equation of state of Carnahan and Starling (14) for 
hard-sphere packing fractions y < 0.47. 

3. P E R T U R B A T I O N  M E T H O D  

Following the iteration procedure proposed by Shinomoto, we first 
assume pair and radial distribution functions valid to zero order in y to be 
used in the right-hand side of Eq. (10). In doing so, we may then calculate 
the distribution functions valid to first order in y. Iterating on this 
procedure, the higher-order approximations may be found. 

As the zero-order approximation, we assume that g~ and 
g ~  This is a reasonable assumption for a dilute gas. Equation (4) 
then gives 

03ykT[1-cos2Oo(x)] for a<~x<<.3a 
Fl(x) = a (14) 

for x > 3a 

which results in the effective pair potential 

r = f~ F~(x')dx'={oYkT~(x) for a<~x<,3a 
for x>3a (15) 
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where 

1 _1 f~,a 
-~01(x)= a 

_ 2 [ ( l + p ) 2 _ 4 ] ( 3 _ r  l _ ( ~ + p ) 1 ] }  

and 
~=x/a, p= +_R/a (17) 

(16) 

The radial distribution function in the first-order approximation is then 
given by 

t 
0 for x<a 

g~(x)=  exp[y~ j (x ) ]  for a<<.x<~3a (18) 

1 for x>3a 

The pair distribution function ga(x) at contact, i.e., for x = a, is obtained 
from Eq. (18) by setting R = +a  or p = +1; accordingly 

In the next, i.e,, second-order approximation, we use now Eqs. (12), 
(18) and (19) in Eq. (4) and compute an improved force function 

3y ( ~ ) f o  F2(x) =~aa kTexp y g~[i(x, cos 0)] cos 0 sin 0 dO 
0 

6 ykT exp y g~(Y:) f(x,  s ds (20) 
a 

where 

and 

and 

(x -t- R) 2 - ( i  + R) 2 -t- 4a 2 
f(x, i ) =  8a2(x+_R)2 (if+R) (21) 

:~o = x - 2a, i l  = x + 2a for 3a < x < 5a (22) 

i o = a ,  i l = x + 2 a  for a<~x<~3a 
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In order to evaluate the integral in Eq. (20) we make the low-density 
expansion 

g~(x)=exp[yO~(x)]~-l + yOl(x) for a<<.x<~3a (23) 

consistent with the first-order approximation. Then the second-order force 
function takes the form in Region I, a < x < 3a, 

F2(x) = N2 f(x ,  2) d~ + y 

and in Region II, 3a < x < 5a, 

I ~ x  + 2a 3a 
F2(x)=N2Lo~ 2 ~ f ( x ' 2 ) d 2 + Y f ,  2r 

q 
tp~(2)f(x, 2) d2| (24) 

3 

~/1(~) f(x, 2) dx I (25) 

where N2= (6ykT/a)e 5/2y. The first term in Eq. (25) must vanish due to 
symmetry considerations. For x > 5a, F2(x) = 0. 

The effective potential in second order requires the additional 
integration 

r = F2(x') dx' (26) 
x 

or in Region I, the solution of 

f ) ; 2  +2~ ;) - dx' dYcf (x ' , f )+y  dx' d2~Ol(2)f( ,2) 
N2 

+ y dx' d 2 ~ ( 2 ) f ( x ' , 2 )  (27) 
a ' - - 2 a  

and in Region II, the solution of 

U2 =YJx dX'Jx' 2. d2@'(2)f(x ' '2)  (28) 

One must note that in order to be consistent in the second-order pertur- 
bation, the function, c o5y/2, must also be expanded in terms of y and all 
terms in the final result involving powers greater than y2 must be omitted. 
The radial distribution function in the second-order approximation is then 
given by 

O, x<~a 
exp[yO~a(x)+ 2 Ib X Y r  )]' a < x < 3 a  (29) 

g~(x)= exp[y2O~i(x)] ' 3 a < x < 5 a  

1, x > 5a 
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where the functions in the arguments of the exponentials are defined by the 
integrals in Eqs. (27) and (28). Although the integrands of Eqs. (27) and 
(28) are elementary rational functions, the integrations become quite 
tedious for a general choice of R. For this reason, the symbolic 
manipulation program, REDUCE2, was used to perform the integrals. 

4. SECOND-ORDER PAIR DISTRIBUTION FUNCTION 

The second-order potential evaluated at R = +a is given as 

5 ~bI(x' Y' R = a ) - (  1 + 2  Y ) I - ( x - 3 a ) 2  (x+  9a!] 
y k T  16a 3 

F3(69a2 + 208ax-  77x 2) 52] 
+ Y L 

fo ra~<x~<3aandby  

(30) 

~I1/x 2 t , Y, R = a) (x 5a) 4 (X 3 -F 27ax 2 + 159a2x + 85a 3) 
= (31) 

y2kT 2240a6(x + a) 

for 3a <~ x <~ 5a. 
In Fig. 3, the second-order pair distribution function is plotted as a 

function of the reduced radius from the center of the test particle, r/d, for 
various packing fractions. Here, d is the diameter of the particles and 
r = x + a. In Fig. 4, graphs of the pair distribution function based on the 
data from the molecular dynamics calculations of Alder and Hecht (9b) are 
shown for purposes of comparison. Agreement is quite good between the 
results shown in these two figures at densities low enough such that the 
characteristic second peak around r /d=2  is not significant. In fact, the 
second-order approximation cannot reproduce such a peak as is evident at 
higher densities. This is a systematic result of the iteration procedure. The 
zeroth-order approximation assumed a uniform density of particles around 
the test particle. Geometrical considerations alone produce then an attrac- 
tive averaged first-order force in the region a < x < 3a of Fig. 1. Hence the 
pair distribution is enhanced in this region. In the second-order pertur- 
bation, the geometrical effects still produce attractive forces very near the 
test particle, but the enhanced first-order pair distribution causes averaged 
second-order forces which act in the opposite direction in the region farther 
away from the test particle. Such an opposing set of forces causes the 

822/42/3-4-17 
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Fig. 3. 
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observed trough in the second-order pair distribution function. The second 
peak in the pair distribution function would be produced by the 
next(third)-order approximation as the localized depression in the density 
of particles would again reverse the direction of the averaged force around 
x = 3a causing an enhancement in that region. 

5. GENERAL THIRD-ORDER PERTURBATION SOLUTION 

To carry out the third-order perturbation, we simply repeat the 
iteration procedure using the second-order radial distribution functions. 

From Eq. (4), the third order averaged force is 

F3(x) = 6ykT g~(a) ~ '  g2(~) f ( x ,  2) dye (32) 
a J~o 

where the limits are defined in the same manner as before. Expanding 
Eq. (29) in powers of y yields 

g ~ ( x )  = 

O~ x~a  
1 + la ytp 2 ( x )+  y2{O~b(x)+�89 a<~x<<.3a 

2 II 1 + y t ~  (x),  3a ~ x ~< 5a 

1, x >~ 5a 

(33) 

Inserting this expansion into Eq. (32) and integrating from x to 7a yields 
the third-order potential. In a final step, gZ(a) is also expanded about y. 
After the multiplications, terms of order greater than y3 are dropped. 
Implementing these steps, one finds that in Region III, 5a ~< x ~< 7a, 

N3 Y' , x, - 2. d2 f (x ' ,  2) ~9~(2) (34) 

in Region II, 3a ~< x ~< 5a, 

~bH(x) ~b~n(x = 5a) ffa ff~ 
- d~ ~,ia(~) f ( x ' ,  2 )  

N3 N3 ~- y dx' "- 2. 

+ f2 dX'fx, 2ad2f(x',.~) I//~b(2)nL~ ~2 (  )] 

-If- y2f.fadX~f35~d2f(x'~2)@lI(fc ) (35) 
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and in Region I, a < x < 3a, 

~b~(x) ~b~I(x= 3a) t- 3a  x '  

N3 - N3 f~ dx' f~ +2~ f(x' '2) 

where 

Wehner and Wolfer 

Y 3a 

x oIb(2)+~[#;~"(#)] 2 +y2 dx' d2f(x',2)tb~(s 
~3a  

(36) 

1009 ) N3 -6ykTgz(a)~-6ykTa - a 1 +~ y + ~  y2 

The radial distribution function in the third order is then 

g~(x) = 

O, x ~ a  

exp{ yOla(x) + y20~b(x ) + y3tp~~ a < X < 3a 
e x  2 I I a  x 3 I I b  P{Y03 ( ) + Y 0 3  (x)}, 3a<x<5a 
exp{ y30III(x) }, 5a < x < 7a 

1, x > 7a 

(37) 

(38) 

It should be noted that in a consistent perturbation expansion the lower- 
order terms should remain unchanged with each perturbation. This is 
indeed the case as the relations 

and 

I//Ia(x) : ~/Ia(x)~--- I//l(X ) 

oIb(x) = r 
(39) 

are found to hold. 

I l a  03 (X)=~'~(x) 

6. T H I R D - O R D E R  PAIR D I S T R I B U T I O N  F U N C T I O N  

The integrals of Eqs. (34) to (36) have been performed numerically for 
the value R = a to provide the third-order pai r distribution function. The 
results are shown graphically in Fig. 5. Note that these curves exhibit the 
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The third-order perturbation solution of Eq. (10) evaluated at various packing frac- 
tions. 

oscillatory behavior described in Section 4. Quantitatively, the comparison 
is better at the lower two densities. At y = 0.463, the contact value, i.e., 
g(a), is noticeably too low and the location of the peaks and valleys too far 
to the right. This latter observation can be partially explained by the 
relatively low order of the perturbation solution. Note in Fig. 4, that the 
trend of the exact solution's first valley is to move to the left with increas- 
ing packing fraction. In Fig. 3, the second-order approximation, the 
minima are located roughly at the same value of y. But in the third-order 
approximation, the location of the first minimum does indeed follow the 
trend of the exact results, at least in a qualitative sense at the higher den- 
sities. 

7. C O N C L U S I O N  A N D  D I S C U S S I O N  

Using solely the geometrical arguments first proposed by 
Shinomoto, (11) we have derived a new integral equation for the radial dis- 
tribution function of a hard-sphere dense fluid system. Extending 
Shinomoto's original method provides a perturbation solution to this non- 
linear integral equation. 
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As far as the relationships between this new integral equation and the 
existing theories of dense fluids are concerned, the BGY approach is by far 
the most similar. As in the development leading to Eq. (9), the BGY 
equation can be derived by considering the forces acting on a test 
particle. (15) To illustrate the differences between the two formalisms more 
explicitly, consider the BGY equation for hard spheres under the super- 
position approximation a s  (3'16) 

7zn (x+2a ~.(X__S) 2 ] 
lnga(x) 2a(x+a)  Jmax(a.x 2a~[_ 4a 2 1 ( s + a ) [ g ~ ( s ) - - l ] d s  (40) 

We may rewrite the double integral equation (9) as a single integral 
equation by reversing the integration order. Then, Shinomoto's geometric 
model can be described by 

~ x+2a 
In gR(x) = - 6y ga(a) d2 gR(Y~) ke(x, 2) (41) 

a ~ max(a,x -- 2a) 

where 

f~ 
+ 2 a  

kR(x, ~)= dx' f(x', ~) 

In the limit that R--, a, the kernel becomes 

' - - [  (~ q-a)2 q - ( x + 2 a ) ( x - - a ) - 2 a 2 1  ka(x,  2) = (Yc + a) 2Yc + a (42) 
8a 2 x + a  

Although both theories are described by similar nonlinear integral 
equations of the second kind there are some fundamental differences. Most 
importantly the appearance of the pair correlation function instead of the 
pair distribution function in the BGY formalism causes Eq. (40) to be 
inhomogeneous. In contrast, there are no such terms in the current for- 
malism, resulting in a homogeneous integral equation. In addition to this, 
the BGY kernel is of a polar type and can be made symmetric by the trans- 
formation ga(x)= h(x)/(x+a)2. 071 NO apparent transformation exists for 
the kernel of Eq. (42). 

In addition to these differences in form, the solutions also behave in 
different manners at extremely high (unphysical) densities. The numerical 
solutions of the hard-sphere BGY equation do not converge or yield 
physically acceptable solutions at such high densities. This fact, confirmed 
by molecular dynamics studies, suggests a phase transition near y = 0.47. (xs~ 
It is not fully understood what the cause of this behavior is. However, such 
behavior is not exhibited by the third-order perturbation solution of 
Eq. (9) or by the other integral equation approaches. 
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Fig. 6. A graphical comparison of some of the various hard-sphere pair distribution 
approaches at the packing fraction y = 0.463. MD is the molecular dynamics results of Alder 
and Hecht. Pu is the Wertheim-Thiele solution of the Percus-Yevick equation. BGY is the 
numerical solution of the Born Green-Yvon equation. WW is the third-order perturbation 
solution of Eq. (10). 

A graphical comparison of the pair distribution functions produced by 
the various dense fluid theories is given in Fig. 6 together with the "exact" 
molecular dynamics results. (1) It should be noted that the third-order per- 
turbation solution of Eq. (9) produces results slightly more accurate than 
the BGY approach but less accurate than the Wertheim-Thiele solution of 
the PY equation. At this high density (y=0.463), terms of higher order 
than 3 probably contribute significantly to the solution of Eq. (9). 
Therefore, a numerical evaluation of Eq. (9) is required at high densities 
before a final comparison can be made. Nevertheless, the present results 
indicate that this new approach to the theory of fluids is a promising one. 
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